Probability Functional Descent: A Unifying Perspective on GANs, VI, and RL

Casey Chu <caseychu@stanford.edu> Jose Blanchet Peter Glynn

Generative adversarial networks

Variational inference

Reinforcement learning

 π

Lots of algorithms...

Generative adversarial networks

- Minimax GAN
- Non-saturating GAN
- Wasserstein GAN
- f-GAN

Variational inference

- Black-box variational inference
- Adversarial variational Bayes

Reinforcement learning

- Policy iteration/Q-learning
- REINFORCE
- Deep deterministic policy gradient
- Dual actor-critic
- Soft actor-critic

Lots of algorithms... but same "under the hood"!

Generative adversarial networks

- Minimax GAN
- Non-saturating GAN
- Wasserstein GAN
- f-GAN

Variational inference

- Black-box variational inference
- Adversarial variational Bayes

Reinforcement learning

- Policy iteration/Q-learning
- REINFORCE
- Deep deterministic policy gradient
- Dual actor-critic
- Soft actor-critic

They all minimize *probability functionals*

Generative adversarial networks

Variational inference

 $J_{ ext{GAN}}(\mu) = D(\mu \,||\,
u_0)$

$$J_{ ext{VI}}(q) = D_{ ext{KL}}(q(heta) \,|| \, p(heta | x))$$

They all minimize *probability functionals*

$J:\mathcal{P}(X) ightarrow\mathbb{R}$

Probability distributions over elements in X (in the GAN setting: generators of images)

$$f: \mathbb{R}^n o \mathbb{R} \qquad \qquad x_{ ext{new}} \leftarrow x_0 - lpha
abla f(x_0)$$

$$f_{ ext{linear}}(x) = f(x_0) + (x-x_0) \cdot
abla f(x_0)$$

$$f(x)pprox f_{ ext{linear}}(x)=f(x_0)+(x-x_0)\cdot
abla f(x_0)$$

Gradient descent says: **if we move** *x* **such that** *f*_{linear} **decreases, hopefully** *f* **will decrease as well**

$$f(x)pprox f_{ ext{linear}}(x)=f(x_0)+(x-x_0)\cdot
abla f(x_0)$$

Gradient descent says: **if we move** *x* **such that** *f*_{linear} **decreases, hopefully** *f* **will decrease as well**

 $x_{ ext{new}} \leftarrow x_0 - lpha
abla f(x_0)$

$$egin{aligned} f_{ ext{linear}}(x_{ ext{new}}) &= f(x_0) + (x_0 - lpha
abla f(x_0) - x_0) \cdot
abla f(x_0) \ &= f(x_0) - lpha ||
abla f(x_0) ||^2 \ &\leq f_{ ext{linear}}(x_0) \end{aligned}$$

$$f(x) pprox f_{ ext{linear}}(x) = f(x_0) + (x - x_0) \cdot
abla f(x_0)$$

Gradient descent says: **if we move** *x* **such that** *f*_{linear} **decreases, hopefully** *f* **will decrease as well**

 $x_{ ext{new}} \leftarrow x_0 - lpha
abla f(x_0)$

$$egin{aligned} f_{ ext{linear}}(x_{ ext{new}}) &= f(x_0) + (x_0 - lpha
abla f(x_0) - x_0) \cdot
abla f(x_0) \ &= f(x_0) - lpha ||
abla f(x_0) ||^2 \ &\leq f_{ ext{linear}}(x_0) \end{aligned}$$

$$f(x) pprox f_{ ext{linear}}(x) = f(x_0) + (x - x_0) \cdot
abla f(x_0)$$

Gradient descent says: **if we move** *x* **such that** *f*_{linear} **decreases, hopefully** *f* **will decrease as well**

 $x_{ ext{new}} \leftarrow x_0 - lpha
abla f(x_0)$

$$egin{aligned} f_{ ext{linear}}(x_{ ext{new}}) &= f(x_0) + (x_0 - lpha
abla f(x_0) - x_0) \cdot
abla f(x_0) \ &= f(x_0) - lpha ||
abla f(x_0) ||^2 \ &\leq f_{ ext{linear}}(x_0) \end{aligned}$$

$$f(x) \approx f_{\text{linear}}(x) = f(x_0) + (x - x_0) \cdot \nabla f(x_0)$$

Gradient descent says: **find** *x*_{**new**} **such that**

$$x_{ ext{new}} \cdot
abla f(x_0) \leq x_0 \cdot
abla f(x_0)$$

$$egin{aligned} f(x) &pprox f(x_0) +
abla f(x_0) \cdot (x-x_0) \ &J(\mu) &pprox J(\mu_0) + \int
abla J(\mu_0) \, d(\mu-\mu_0) \, d(\mu-\mu_0) \ \end{aligned}$$

$$J:\mathcal{P}(X)
ightarrow\mathbb{R}\qquad
abla J(\mu_0):X
ightarrow\mathbb{R}$$

$$egin{aligned} f(x) &pprox f(x_0) +
abla f(x_0) \cdot (x-x_0) \ &J(\mu) &pprox J(\mu_0) + \int
abla J(\mu_0) \, d(\mu-\mu_0) \ &= J(\mu_0) + \mathbb{E}_{x \sim \mu}[
abla J(\mu_0)(x)] - \mathbb{E}_{x \sim \mu_0}[
abla J(\mu_0)(x)] \end{aligned}$$

$$J:\mathcal{P}(X) o\mathbb{R} \qquad
abla J(\mu_0):X o\mathbb{R}$$

$$egin{aligned} f(x) &pprox f(x_0) +
abla f(x_0) \cdot (x-x_0) \ &J(\mu) &pprox J(\mu_0) + \int
abla J(\mu_0) \, d(\mu-\mu_0) \ &= J(\mu_0) + \mathbb{E}_{x \sim \mu}[
abla J(\mu_0)(x)] - \mathbb{E}_{x \sim \mu_0}[
abla J(\mu_0)(x)] \end{aligned}$$

 $J:\mathcal{P}(X)
ightarrow\mathbb{R}\qquad
abla J(\mu_0):X
ightarrow\mathbb{R}$

$$egin{aligned} f(x) &pprox f(x_0) +
abla f(x_0) \cdot (x-x_0) \ &J(\mu) &pprox J(\mu_0) + \int
abla J(\mu_0) d(\mu-\mu_0) \ &= J(\mu_0) + \mathbb{E}_{x \sim \mu} [
abla J(\mu_0)(x)] - \mathbb{E}_{x \sim \mu_0} [
abla J(\mu_0)(x)] \ &= \mathbb{E}_{x \sim \mu} [
abla J(\mu_0)(x)] + ext{const.} \end{aligned}$$

$$J:\mathcal{P}(X) o\mathbb{R}\qquad
abla J(\mu_0):X o\mathbb{R}$$

$$egin{aligned} f(x) &pprox f(x_0) +
abla f(x_0) \cdot (x-x_0) \ &J(\mu) &pprox J(\mu_0) + \int
abla J(\mu_0) d(\mu-\mu_0) \ &= J(\mu_0) + \mathbb{E}_{x \sim \mu} [
abla J(\mu_0)(x)] - \mathbb{E}_{x \sim \mu_0} [
abla J(\mu_0)(x)] \ &= \mathbb{E}_{x \sim \mu} [
abla J(\mu_0)(x)] + ext{const.} \end{aligned}$$

$$J:\mathcal{P}(X) o\mathbb{R}\qquad
abla J(\mu_0):X o\mathbb{R}$$

von Mises influence function

Probability functional descent

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Find a distribution μ such that

$$\mathbb{E}_{x\sim\mu}[
abla J(\mu_0)(x)] \leq \mathbb{E}_{x\sim\mu_0}[
abla J(\mu_0)(x)]$$

$$J:\mathcal{P}(X)
ightarrow\mathbb{R}$$

$$abla J(\mu_0):X o \mathbb{R}$$

von Mises influence function

Probability functional descent

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Find a distribution μ such that

$$\mathbb{E}_{x\sim\mu}[
abla J(\mu_0)(x)] \leq \mathbb{E}_{x\sim\mu_0}[
abla J(\mu_0)(x)]$$

2 (in practice). Parameterize μ with θ and take a gradient descent step on the function

$$heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
abla J(\mu_{ heta_0})(x)]$$

Probability functional descent

- 1. Compute or approximate $\,\,
 abla J(\mu_0)$
- 2. Find a distribution μ such that

$$\mathbb{E}_{x\sim\mu}[
abla J(\mu_0)(x)] \leq \mathbb{E}_{x\sim\mu_0}[
abla J(\mu_0)(x)]$$

1 (in practice). Fit a neural network to $\nabla J(\mu_0): X \to \mathbb{R}$ 2 (in practice). Parameterize μ with θ and take a gradient descent step on the function Neural network

$$heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
abla J(\mu_{ heta_0})(x)]$$

PFD for **minimax GANs**

$$J(\mu)=D_{
m JS}(\mu||
u_0)$$

$$abla J(\mu)(x) = rac{1}{2}\lograc{\mu(x)}{\mu(x)+
u_0(x)}$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_{ heta}}[
 abla J(\mu_{ heta_0})(x)]$

PFD for minimax GANs

2) Take a gradient step on the generator

$$heta \mapsto \mathbb{E}_{x \sim \mu_ heta}[rac{1}{2}\log D(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for variational inference

$$egin{aligned} J(q) &= D_{ ext{KL}}(q(z) \,||\, p(z|x)) \
onumber
onumber
onumber \ \nabla J(q)(z) &= \log rac{q(z)}{p(x|z)\, p(z)} \end{aligned}$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for variational inference

$$egin{aligned} J(q) &= D_{ ext{KL}}(q(z) \,|| \, p(z|x)) \
onumber
onumbe$$

1) We can compute this exactly, no need to fit a network to it

2) Take a gradient step on the ELBO

$$heta \mapsto \mathbb{E}_{z \sim q_ heta} \Big[\log rac{q_{ heta_0}(z)}{p(x|z)\,p(z)} \Big]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for actor-critic RL algorithms

$$J(\pi) = -\mathbb{E} \Big[\sum_{t=0}^\infty \gamma^t R_t \Big]$$

$$abla J(\pi)(s,a) = -(1-\gamma)ig(Q^{\pi}(s,a)-V^{\pi}(s)ig)$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for actor-critic RL algorithms

$$J(\pi) = -\mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t R_t\Big]$$
 1) Fit a neural network to this advantage function (e.g. by minimizing the Bellman residuals)
 $abla J(\pi)(s,a) = -(1-\gamma)\Big(Q^{\pi}(s,a) - V^{\pi}(s)\Big)$

2) Take a gradient step on

$$heta\mapsto -\mathbb{E}_{(s,a)\sim \pi_{ heta}}ig[Q^{\pi_{ heta_0}}(s,a)-V^{\pi_{ heta_0}}(s)ig]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for minimax GANs

2) Take a gradient step on the generator

$$heta \mapsto \mathbb{E}_{x \sim \mu_ heta}[rac{1}{2}\log D(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

convex conjugate

PFD for **any convex function** $J^{\star}(\varphi) = \sup_{\mu \in \mathcal{M}(X)} \int \varphi \, d\mu - J(\mu)$

$$J(\mu) ext{ convex}$$

$$abla J(\mu) = rgmax_{arphi \in \mathcal{C}(X)} \left[\mathbb{E}_{x \sim \mu} [arphi(x)] - J^{\star}(arphi)
ight]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

convex conjugate

PFD for any convex function

- /

1

$$J^\star(arphi) = \sup_{\mu \in \mathcal{M}(X)} \int arphi \, d\mu - J(\mu)$$

$$J(\mu) ext{ convex}$$

1) Fit a neural network by maximizing the inner objective (can use SGD)
 $abla J(\mu) = rgmax_{arphi \in \mathcal{C}(X)} \left[\mathbb{E}_{x \sim \mu} [arphi(x)] - J^{\star}(arphi)
ight]$

2) Take a gradient step on

$$heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[arphi(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

convex conjugate

PFD for any convex function

T /

)

$$J^\star(arphi) = \sup_{\mu \in \mathcal{M}(X)} \int arphi \, d\mu - J(\mu)$$

$$J(\mu) ext{ convex}$$

1) Fit a neural network by maximizing the inner objective (can use SGD)
 $abla J(\mu) = rgmax_{arphi \in \mathcal{C}(X)} \left[\mathbb{E}_{x \sim \mu} [arphi(x)] - J^{\star}(arphi)
ight]$

Neatly summarized as a minimax game!

$$\inf_{\mu\in\mathcal{P}(X)}\sup_{arphi\in\mathcal{C}(X)}\mathbb{E}_{x\sim\mu}[arphi(x)]-J^{\star}(arphi)$$

2) Take a gradient step on

$$heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[arphi(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for Wasserstein GAN

 $egin{aligned} J(\mu) &= W_1(\mu,
u_0) \ & ext{ 1) Fit a neural network by maximizing the inner objective (can use SGD)} \ &
abla J(\mu) &= rgmax & \left[\mathbb{E}_{x \sim \mu}[arphi(x)] - J^\star(arphi)
ight] \end{aligned}$

2) Take a gradient step on

$$heta \mapsto \mathbb{E}_{x \sim \mu_ heta}[arphi(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for Wasserstein GAN

 $J(\mu) = W_1(\mu, \nu_0)$

$$J^{\star}(arphi) = egin{cases} \mathbb{E}_{x \sim
u_0}[arphi(x)] & ext{if } arphi ext{ is 1-Lipschitz} \ \infty & ext{otherwise} \end{cases}$$

1) Fit a neural network by maximizing the inner objective (can use SGD)

$$abla J(\mu) = rgmax_{arphi \in \mathcal{C}(X)} \left[\mathbb{E}_{x \sim \mu} [arphi(x)] - J^{\star}(arphi)
ight]$$

2) Take a gradient step on

$$heta \mapsto \mathbb{E}_{x \sim \mu_ heta}[arphi(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

PFD for Wasserstein GAN

 $J(\mu) = W_1(\mu,
u_0)$

$$J^{\star}(arphi) = egin{cases} \mathbb{E}_{x \sim
u_0}[arphi(x)] & ext{if } arphi ext{ is 1-Lipschitz} \ \infty & ext{otherwise} \end{cases}$$

1) Fit a neural network by maximizing the inner objective (can use SGD)

$$abla J(\mu) = rgmax_{arphi \in \mathrm{Lip}_1(X)} \Big[\mathbb{E}_{x \sim \mu} [arphi(x)] - \mathbb{E}_{x \sim
u_0} [arphi(x)] \Big]$$

2) Take a gradient step on

$$heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[arphi(x)]$$

- 1. Compute or approximate $\nabla J(\mu_0)$
- 2. Take a gradient descent step on $\ heta\mapsto \mathbb{E}_{x\sim \mu_ heta}[
 abla J(\mu_{ heta_0})(x)]$

Lots of algorithms... but same "under the hood"!

Generative adversarial networks

- Minimax GAN
- Non-saturating GAN
- Wasserstein GAN
- f-GAN

Reinforcement learning

- Policy iteration/Q-learning
- REINFORCE
- Deep deterministic policy grad
- Dual actor-critic
- Soft actor-critic

Variational inference

- Black-box variational • inference
- Adversarial variational Bayes

Gradient descent

in the space of

probability

distributions!