
Probability Functional Descent:
A Unifying Perspective on GANs, VI, and RL

Casey Chu <caseychu@stanford.edu>    Jose Blanchet    Peter Glynn



Generative adversarial networks Variational inference

Reinforcement learning



Generative adversarial networks

StyleGAN (Karras et al. 2018)

GANs can generate incredibly 
realistic images!
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Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…  

GANs: 
The generator produces an image.
The discriminator judges how good the image is. 

RL: 
The actor (policy) produces an action. 
The critic (value function) judges how good the action is. 
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RL as inference: Maximum-entropy reinforcement learning can be 
implemented as a variational inference procedure.
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A lot of the same techniques:
● Reparameterization trick
● Log-derivative trick/REINFORCE
● Stochastic gradient descent
● Neural networks
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There are a surprising number of connections among 
these fields: is there an underlying explanation?
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We are interested in an optimal 
generator. The discriminator tells 
us how to improve the generator.

We are interested in an optimal 
policy. The critic [value function] 
tells us how to improve the actor 
[policy].

We are interested in an optimal 
approximate posterior. The ELBO 
tells us how to improve the 
approximate posterior.
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Hidden connections…  

First-order optimization

We are interested in an optimal 
generator. The discriminator tells 
us how to improve the generator.

We are interested in an optimal 
approximate posterior. The ELBO 
tells us how to improve the 
approximate posterior.

We are interested in an optimal 
value of a variable. The gradient of 
the loss function tells us how to 
improve the value of the variable.

We are interested in an optimal 
policy. The critic [value function] 
tells us how to improve the actor 
[policy].



Hidden connections...

GAN/RL/VI algorithms minimize some loss function, for which 
the discriminator/value function/ELBO is the “gradient”!
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GANs minimize the Jensen-Shannon divergence

Jensen-Shannon divergence
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GANs, VI, RL all minimize probability functionals
In the GAN case: X is the 
space of images

Contains all probability 
distributions over elements in X

In the GAN case: P(X) is the 
space of all distributions 
over images.



GANs, VI, RL all minimize probability functionals
In the VI case: X is the 
space of parameters (z)

Contains all probability 
distributions over elements in X

In the VI case: P(X) is the space of 
all distributions over parameters 
(all possible posteriors).



GANs, VI, RL all minimize probability functionals
In the RL case: X is the space of 
states and actions

Contains all probability 
distributions over elements in X

In the RL case: P(X) is the space of 
all distributions over state-action 
pairs (≈ all possible policies)



GANs, VI, RL all minimize probability functionals



von Mises influence function

probability functional

J : P(X) → ℝ
gradient ∇J(μ)

von Mises influence function

Ψ : X → ℝ



von Mises influence function

The von Mises influence function

is the function Ψ, unique up to an additive 
constant, such that for all distributions ν,
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von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).
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von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ′)(x)
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von Mises influence function

optimal 
discriminator

negative ELBO

value functions 
(advantage)
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von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).
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Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).
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von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x) = Ψ(x)
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Theorem 1 (chain rule):

where

is the von Mises influence function, treated as 
constant w.r.t. θ.
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where

is the von Mises influence function, treated as 
constant w.r.t. θ.



1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3. Theorem (chain rule):

Probability functional descent
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1. Initialize generator parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (GANs)

Solve this optim
ization problem



1. Initialize approx. posterior parameters θ arbitrarily

2. We can evaluate the von Mises influence function directly:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (VI)

Negative ELBO



1. Initialize policy parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (RL) M
inim

ize the Bellm
an residual



1. Initialize policy parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (RL) M
inim

ize the Bellm
an residual



1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent



Variational inference
● Black-box variational 

inference
● Adversarial variational 

Bayes

Reinforcement learning
● REINFORCE
● Deep deterministic policy gradient
● Dual actor-critic
● Soft actor-critic

Lots of algorithms... but PFD “under the hood”!

Generative adversarial networks
● Minimax GAN
● Non-saturating GAN
● Wasserstein GAN
● f-GAN



1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent

Requires some creativity!



Suppose J is convex. Then:

where 

is the convex conjugate of J.

Influence function via convex duality



1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

  

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (convex function)

We’ve recovered a minimax, adversarial game!
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Variational inference
● Black-box variational 

inference
● Adversarial variational 

Bayes

Reinforcement learning
● REINFORCE
● Deep deterministic policy gradient
● Dual actor-critic*
● Soft actor-critic

Lots of algorithms... but PFD “under the hood”!

Generative adversarial networks
● Minimax GAN*
● Non-saturating GAN*
● Wasserstein GAN*
● f-GAN*

Gradient descent in the space of probability distributions!

Your field!
● Your algorithm!





What is gradient descent really?
Taylor expansion

Gradient descent

Generic descent algorithm: choose x such that Δf < 0.



Gradient descent in the space of probabilities
Suppose X is a finite set with n elements, 
so that P(X) is simply a subset of Rn.

Generic descent algorithm: choose p such that ΔJ < 0.



Gradient descent in the space of probabilities

Generalize to general sets X, 
not necessarily discrete!



Gradient descent in the space of probabilities

Generalize to general sets X, 
not necessarily discrete!

The gradient is now a function



Von Mises influence function

The von Mises influence function

is the function Ψ, unique up to an 
additive constant, such that for all ν,



Gradient descent in the space of probabilities

Generic descent algorithm: choose μ such that ΔJ < 0.

At every update, we’d like to find a distribution μ such that 





PFD for Wasserstein GAN

Probability functional descent
1. Compute or approximate 
2. Take a gradient descent step on 

2) Take a gradient step on

1) Fit a neural network by maximizing the 
inner objective (can use SGD)



PFD for Wasserstein GAN

Probability functional descent
1. Compute or approximate 
2. Take a gradient descent step on 

2) Take a gradient step on

1) Fit a neural network by maximizing the 
inner objective (can use SGD)


