
Probability Functional Descent:
A Unifying Perspective on GANs, VI, and RL

Casey Chu <caseychu@stanford.edu> Jose Blanchet Peter Glynn

Generative adversarial networks Variational inference

Reinforcement learning

Generative adversarial networks

StyleGAN (Karras et al. 2018)

GANs can generate incredibly
realistic images!

Generative adversarial networks

Variational inference

posterior

approximate
posterior

negative ELBO

likelihood prior

+

Generative adversarial networks Variational inference

Reinforcement learning

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

GANs:
The generator produces an image.
The discriminator judges how good the image is.

RL:
The actor (policy) produces an action.
The critic (value function) judges how good the action is.

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

RL as inference: Maximum-entropy reinforcement learning can be
implemented as a variational inference procedure.

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

A lot of the same techniques:
● Reparameterization trick
● Log-derivative trick/REINFORCE
● Stochastic gradient descent
● Neural networks

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

There are a surprising number of connections among
these fields: is there an underlying explanation?

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

We are interested in an optimal
generator. The discriminator tells
us how to improve the generator.

We are interested in an optimal
policy. The critic [value function]
tells us how to improve the actor
[policy].

We are interested in an optimal
approximate posterior. The ELBO
tells us how to improve the
approximate posterior.

Generative adversarial networks Variational inference

Reinforcement learning

Hidden connections…

First-order optimization

We are interested in an optimal
generator. The discriminator tells
us how to improve the generator.

We are interested in an optimal
approximate posterior. The ELBO
tells us how to improve the
approximate posterior.

We are interested in an optimal
value of a variable. The gradient of
the loss function tells us how to
improve the value of the variable.

We are interested in an optimal
policy. The critic [value function]
tells us how to improve the actor
[policy].

Hidden connections...

GAN/RL/VI algorithms minimize some loss function, for which
the discriminator/value function/ELBO is the “gradient”!

GANs minimize the Jensen-Shannon divergence

GANs minimize the Jensen-Shannon divergence

GANs minimize the Jensen-Shannon divergence

Jensen-Shannon divergence

GANs, VI, RL all minimize loss functions

GANs, VI, RL all minimize probability functionals

Contains all probability
distributions over elements in X

GANs, VI, RL all minimize probability functionals
In the GAN case: X is the
space of images

Contains all probability
distributions over elements in X

In the GAN case: P(X) is the
space of all distributions
over images.

GANs, VI, RL all minimize probability functionals
In the VI case: X is the
space of parameters (z)

Contains all probability
distributions over elements in X

In the VI case: P(X) is the space of
all distributions over parameters
(all possible posteriors).

GANs, VI, RL all minimize probability functionals
In the RL case: X is the space of
states and actions

Contains all probability
distributions over elements in X

In the RL case: P(X) is the space of
all distributions over state-action
pairs (≈ all possible policies)

GANs, VI, RL all minimize probability functionals

von Mises influence function

probability functional

J : P(X) → ℝ
gradient ∇J(μ)

von Mises influence function

Ψ : X → ℝ

von Mises influence function

The von Mises influence function

is the function Ψ, unique up to an additive
constant, such that for all distributions ν,

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

μ
X

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

J 5.1625

X

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x)

μ′

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

μ′

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ′)(x)

von Mises influence function

von Mises influence function

optimal
discriminator

negative ELBO

value functions
(advantage)

μ′

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

J ?

X

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

J 5.1625

X

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x) = Ψ(x)

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x) = Ψ(x)

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x) = Ψ(x)

μ

von Mises influence function
Let J : P(X) → ℝ be a probability functional, and let μ ∈ P(X).

X

∇J(μ)(x)

Theorem 1 (chain rule):

where

is the von Mises influence function, treated as
constant w.r.t. θ.

Theorem 1 (chain rule):

where

is the von Mises influence function, treated as
constant w.r.t. θ.

Theorem 1 (chain rule):

where

is the von Mises influence function, treated as
constant w.r.t. θ.

1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3. Theorem (chain rule):

Probability functional descent

1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3. Theorem (chain rule):

Probability functional descent

1. Initialize generator parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (GANs)

Solve this optim
ization problem

1. Initialize approx. posterior parameters θ arbitrarily

2. We can evaluate the von Mises influence function directly:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (VI)

Negative ELBO

1. Initialize policy parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (RL) M
inim

ize the Bellm
an residual

1. Initialize policy parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (RL) M
inim

ize the Bellm
an residual

1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent

Variational inference
● Black-box variational

inference
● Adversarial variational

Bayes

Reinforcement learning
● REINFORCE
● Deep deterministic policy gradient
● Dual actor-critic
● Soft actor-critic

Lots of algorithms... but PFD “under the hood”!

Generative adversarial networks
● Minimax GAN
● Non-saturating GAN
● Wasserstein GAN
● f-GAN

1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent

Requires some creativity!

Suppose J is convex. Then:

where

is the convex conjugate of J.

Influence function via convex duality

1. Initialize parameters θ arbitrarily

2. Fit a neural network to the von Mises influence function:

3. Perform the gradient update

4. Repeat 2 and 3.

Probability functional descent (convex function)

We’ve recovered a minimax, adversarial game!

Variational inference
● Black-box variational

inference
● Adversarial variational

Bayes

Reinforcement learning
● REINFORCE
● Deep deterministic policy gradient
● Dual actor-critic*
● Soft actor-critic

Lots of algorithms... but PFD “under the hood”!

Generative adversarial networks
● Minimax GAN*
● Non-saturating GAN*
● Wasserstein GAN*
● f-GAN*

Gradient descent in the space of probability distributions!

Variational inference
● Black-box variational

inference
● Adversarial variational

Bayes

Reinforcement learning
● REINFORCE
● Deep deterministic policy gradient
● Dual actor-critic*
● Soft actor-critic

Lots of algorithms... but PFD “under the hood”!

Generative adversarial networks
● Minimax GAN*
● Non-saturating GAN*
● Wasserstein GAN*
● f-GAN*

Gradient descent in the space of probability distributions!

Your field!
● Your algorithm!

What is gradient descent really?
Taylor expansion

Gradient descent

Generic descent algorithm: choose x such that Δf < 0.

Gradient descent in the space of probabilities
Suppose X is a finite set with n elements,
so that P(X) is simply a subset of Rn.

Generic descent algorithm: choose p such that ΔJ < 0.

Gradient descent in the space of probabilities

Generalize to general sets X,
not necessarily discrete!

Gradient descent in the space of probabilities

Generalize to general sets X,
not necessarily discrete!

The gradient is now a function

Von Mises influence function

The von Mises influence function

is the function Ψ, unique up to an
additive constant, such that for all ν,

Gradient descent in the space of probabilities

Generic descent algorithm: choose μ such that ΔJ < 0.

At every update, we’d like to find a distribution μ such that

PFD for Wasserstein GAN

Probability functional descent
1. Compute or approximate
2. Take a gradient descent step on

2) Take a gradient step on

1) Fit a neural network by maximizing the
inner objective (can use SGD)

PFD for Wasserstein GAN

Probability functional descent
1. Compute or approximate
2. Take a gradient descent step on

2) Take a gradient step on

1) Fit a neural network by maximizing the
inner objective (can use SGD)

