
Probability Functional Descent: A Unifying Perspective on
GANs, Variational Inference & Reinforcement Learning

Casey Chu <caseychu@stanford.edu> Jose Blanchet Peter Glynn

Optimizing probability functionals
Let be a function, where is a topological

space, and denotes the set of all probability

distributions on . We call such functions probability

functionals.

The goal is to �nd a probability distribution that

minimizes .

A unifying perspective
Many modern machine learning problems can be

formulated this way:

Generative models. Let be a data distribution that

we want to mimic with . This can be framed as

minimizing a divergence to . In this case, we let

where is, for example, the Jensen–Shannon

divergence or the Wasserstein distance.

Variational inference. Let be a posterior

distribution over parameters given data . This is

usually dif�cult to compute, so instead, we seek a good

approximation . In this case, we typically let

where is the Kullback–Liebler divergence.

Reinforcement learning. Consider a Markov decision

process governed by transitions

and a policy . We seek a policy that maximizes

the total discounted expected reward. In this case, we let

Linearizing the probability functional
To minimize , we need some notion of gradients of

probability functionals. The appropriate generalization for

probability functionals is the von Mises in�uence function.

The von Mises in�uence function of at

 is a function such that for all

,

It is a representation of the Gâteaux differential.

This construction allows for a von Mises representation of

, an analogue of a �rst-order Taylor expansion around :

Therefore, perturbing to decrease will also

decrease so long as the perturbation is small enough.

Intuitively, behaves as a potential function that

indicates where samples should descend if the goal is

to decrease .

Probability functional descent
We introduce probability functional descent (PFD), a

recipe for minimizing probability functionals

. It’s a generalization of gradient descent (which is limited

to functions).

Given an initial distribution , PFD updates it by repeatedly

performing two steps:

Differentiation. Compute the von Mises in�uence

function of at the current iterate . The in�uence

function is a function .

Descent. Find a distribution that decreases

, and set it to be the next iterate.

The descent step in practice
For the descent step, we can introduce a parameterization

 and apply gradient steps to decrease

Indeed, a generalization of the chain rule says

The in�uence function converts a dif�cult minimization

problem into a problem solvable by our deep learning

toolbox: neural networks, stochastic gradient descent, and

the reparameterization/log-derivative trick!

The differentiation step in practice
For the differentiation step, it’s usually straightforward to

derive an analytic expression for the in�uence function ,

from . However, evaluating may require us to

approximate it. Each approximation scheme corresponds to

a variant of PFD:

Exact. In some cases, it’s possible to evaluate exactly,

so no approximation is necessary.

Ad hoc. We can look at the analytic expression for

and develop ad hoc methods for approximating the

terms it contains.

Convex duality. If is convex, then a generic

approximation scheme is available. In this case,

satis�es

where is the convex conjugate of , and is the

set of continuous functions on .

Taking advantage of this, we can model the in�uence

function with a neural network by training it

to maximize .

With this approximation scheme, PFD can be written as

a generalization of adversarial training!

Generative adversarial networks
When applied to , PFD recovers the GAN scheme, in

which the in�uence function is approximated by the

discriminator. The differentiation step is the discriminator

update; the descent step is the generator update. Different

GANs use different approximation schemes:

Algorithm Approximation scheme

Minimax GAN Convex duality

Non-saturating GAN Ad hoc (binary classi�cation)

Wasserstein GAN Convex duality

Variational inference
The in�uence function for is the ELBO integrand:

PFD with different approximation schemes recovers

different algorithms:

Algorithm Approximation scheme

Black-box variational inference Exact

Adversarial variational Bayes Ad hoc (binary classi�cation)

Adversarial posterior distillation Convex duality

Actor-critic algorithms
The in�uence function for is the advantage function:

The differentiation step is policy evaluation; the descent

step is policy improvement. PFD with different

approximation schemes recovers different algorithms:

Algorithm Approximation scheme

Policy iteration Exact

Policy gradient Ad hoc (Monte Carlo)

Actor-critic Ad hoc (least squares)

Dual actor-critic Convex duality

Why is PFD important?
Probability functional descent allows for:

New algorithms. Given a probability functional

describing a new problem of interest, PFD immediately

provides a recipe to minimize it.

Clearer understanding. PFD clari�es relationships

between existing algorithms. For example, GANs and

actor-critic algorithms look similar because they both

approximate the in�uence function, with the

discriminator and critic respectively.

Transfer of knowledge. PFD inspires connections that

allows one �eld to leverage techniques from another. For

example, what would happen if GAN techniques like

gradient penalties were applied to value functions in RL?

J : P(X) → R X

P(X)

X

μ ∈ P(X)

J(μ)

ν 0

μ

ν 0

J (μ) =GM D(μ ∣∣ ν),0

D(⋅ ∣∣ ⋅)

p(θ∣x)

θ x

q(θ)

J (q) =VI D (q(θ) ∣∣ p(θ∣x)),KL

D (⋅∣∣⋅)KL

(S ,A ,R)t t t p(s , r∣s, a)′

π(a∣s) π

J (π) =RL −E[γ R].
t=0

∑
∞

t
t

J

J : P(X) → R
μ ∈ P(X) Ψ : X → R ν ∈

P(X)

E [Ψ(x)] −x∼ν E [Ψ(x)] =x∼μ .
ϵ→0
lim

ϵ

J((1 − ϵ)μ + ϵν) − J(μ)

J μ 0

J(μ) ≈ J(μ) + E [Ψ(x)] − E [Ψ(x)]0 x∼μ x∼μ 0

= E [Ψ(x)] + constant.x∼μ

μ E [Ψ(x)]x∼μ

J(μ)

Ψ : X → R
x ∼ μ

J(μ)

J : P(X) →

R
R →n R

μ

J μ

Ψ : X → R

μ

E [Ψ(x)]x∼μ

θ ↦ μ θ

θ ↦ E [Ψ(x)].x∼μ θ

∇ J(μ) =θ θ ∇ E [Ψ(x)].θ x∼μ θ

Ψ

Ψ

J Ψ

Ψ

Ψ

J

Ψ

Ψ = [E [φ(x)] −
φ∈C(X)

arg max x∼μ J (φ)],⋆

J⋆ J C(X)

X

φ : X → R
E [φ(x)] −x∼μ J (φ)⋆

 [E [φ(x)] −
μ

inf
φ

sup x∼μ J (φ)],⋆

J GM

Ψ GM

J VI

Ψ (θ) =VI log ().
p(θ,x)
q(θ)

J RL

Ψ (s, a) =RL − (Q (s, a) −
π(s)

 γ p (s)∑t=0
∞ t

t
π

π V (s)).π

